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PREFACE

The objective of this work is to summarize data on tunnel
sizes and shapes and to identify the factors involved in sizing
tunnels. The information contained in the report was compiled by
the Mechanical Engineering Division of the Transportation Systems
Center under the sponsorship of the Office for Systems Development
and Technology, Office of the Secretary.
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1. INTRODUCTION

This report identifies inside dimensions of existing and
planned rapid transit tunnels in the United States. Tables 1 and
2 list those existing and proposed transit systems surveyed. Back-
ground information is provided to consider the need for standard-
ization of tunnel dimensions. The varying number of sizes of
tunnels within a transit system as well as among transit systems

is documented.

Historically, transit systems have been custom designed for
each city. As a result, dimensions of stations, vehicles, and
tunnels have varied considerably from system to system and within
systems. The degree to which these customized designs might lead
to increased costs is a very important subject for further study,
although not treated in this survey.

The range of inside dimensions for circular and non-circular
tunnel shapes is shown in Table 3.

1.1 CIRCULAR TUNNELS

Circular-bored subway tunnels in the United States range in
inside diameter from 15'3" to 20'5" (Table 3). This is a result
of varying transit vehicle cross-sections, varying running clear-
ances, varying super-elevations, and other parameter variations
defined below in Section 3. The accomodation of these parameter
variations results in customized designs which in turn lead to
added capital costs.

1.2 NON-CIRCULAR TUNNELS

The range of inside dimensions for non-circular tunnels in
the U.S. is outlined in Table 3. As with circular tunnels this is
a result of the variation of vehicle cross-sections and other tun-
nel parameters. Figure 1 identifies the non-circular tunnel shapes
included in Table 3.

Cut and cover tunnel dimensions, unlike bored tunnels, are
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H
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c) ARCH d) BASKET HANDLE

Figure 1. Tunnel Sections (Ref. 5 § 6)



dependent on street width, utility density, and other site dependent
factors in addition to tunnel parameters. Nevertheless, the tunnel
parameters identified in Section 3 must be accounted for in de-
riving the inside dimensions of all tunnels. Standardization of
these parameters could yield standard sizes.



2. METHOD OF STUDY

The inside dimensions and shapes of existing and proposed
tunnels for each transit system in the United States have been
recorded and compiled into Tables 1 and 2. An analysis of these
data appears in Section 5.

Data on existing tunnels were gathered from reports, design
criteria, telephone conversations, and correspondence. Data on
proposed tunnels were gathered in the same manner. However, since
some transit systems are still in the early planning stages, tunnel
size and shape have not yet been established. References 1 and 2
provide information on cities planning to construct rapid transit
tunnels.



3, IDENTIFICATION OF FACTORS IN SIZING TUNNELS

In deriving the inside dimension of a tunnel, the vehicle
clearance envelope and the tunnel clearance envelope are defined
under the varying conditions of vehicle movements, locations of the
walkway, superelevation, and radii of track curvature. The vehicle
clearance envelope is defined as the space occupied by the dynamic
outline of the design vehicle plus an added running tolerance
around the dynamic outline. The tunnel clearance envelope com-
prises the remaining factors, which are specified by type of tunnel

cross-section.

3.1 VEHICLE CLEARANCE ENVELOPE

The vehicle clearance envelope comprises the following factors:

3.1.1 Dynamic Outline

Dynamic Outline is that derived from the vehicle static out-

line (vehicle cross-section) plus the following car body movements:

Lateral Movement

Lateral movement of wheels
Car body against stops

Car construction tolerance
Truck construction tolerance
Truck assembly tolerance
Wheel wear

Railwear

Vertical Upward

Track construction tolerance
Car construction tolerance
Car body camber

Bounce against stops
Vertical track curvature

10



Vertical Downward

Wheel wear

Rail wear

Air springs against stops
Primary springs against stops
Vertical track curvature

Roll

Specific degree of roll after a specific
amount of lateral movement.

Figure 2 shows the dynamic outline, which is the combined
effect of these factors.

3.1.2 Middle Ordinate Displacement

For varying curve radii, graphs are formulated giving track
radius of curvature vs. displacements for mid-car and end-car over-
hang (see Figure 3). A most convincing reason for increasing the
minimum radius of curvature is to reduce the tunnel diameter.
However, it is realized that site-dependent factors often restrict
the minimum radius.

3.1.3 Effect of Superelevation

The width of the design vehicle dynamic outline on superele-
vated track, exclusive of the values for mid-ordinate displacement
and end-car overhang, is called the dynamic width. This width
includes the dynamic width toward curve center, DWT, and the dynamic
width away from curve center, DWA (see Figures 4 and 5). These
values are measured horizontally from the centerline of track to the
widest point on the design vehicle dynamic outline. Graphs are form-

ulated giving superelevation vs. DWT and DWA (see Figure 6).

The effect of superelevation is considered independently in
determining the vehicle clearance envelope and has been taken into
account in establishing the dimensional clearances for the various

construction sections.

11
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Figure 4. Circular Tunnel Clearance Diagram (Ref. 3)—
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Figure 5. Circular Tunnel Clearance Diagram (Ref. 3)—
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3.2 TUNNEL CLEARANCE ENVELOPE

The tunnel clearance envelope comprises the following factors:

3.2.1 Chorded Construction

Allowances are made when tunnel walls are constructed in
chords whose lengths are measured along the inside face of the
wall nearest the curve. Graphs are formulated giving additional
widths for chorded construction vs. radius of curvature (see Fig-
ure 7).

3.2.2 Construction Tolerance

The construction tolerance is usually specified according to
type of construction material used (e.g. WMATA Design Criteria
(Ref.3): Circular Segmental Tunnel: + 2'; Circular Cast-In-Place
Tunnel: + 1").

3.2.3 C(Clearances

The design vehicle dynamic outline is located to satisfy the
following criteria for the case of circular tunnels (see Figures
4 and 5):

o A specified minimum between any fixed installation or edge
of safety walk and the design vehicle dynamic outline.

e A specified minimum between the inside face of the tunnel
lining and the clearance envelope. Allowance shall be made
for the construction tolerance.

e The design vehicle dynamic envelope shall not encroach
into the safety walk space defined by a vertical line
through the edge of the safety walk.

o A specified minimum from the inside face of the tunnel 1lin-
ing to the contact rail clearance point. Allowance shall
be made for the construction tolerance. The contact rail
clearance point is defined as that electrically energized
point on the contact rail system which is closest to the
tunnel liner.

17
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3.2.4 Location of Tunnel Working Point

The location of the tunnel working point is defined by the XA’
XT, and Y values as shown in Figures 4 and 5. 1In the plane normal
to the top of the low rail, the X, and XT values are measured hori-
zontally from the centerline of track; the Y value is measured norm-
al to the top of the low rail. Tables are formulated giving the
dimensions XA’ XT, Y, and SW (see Table 4) as a function of super-

elevation and radius of curvature.

3.2.5 Location of Safety Walk

The location of the safety walk is as shown in Figures 4 and 5.

All these factors must be accounted for in assuring that the
tunnel size is adequate under all conditions.

3.3 POINTS AFFECTING CIRCULAR TUNNEL DIAMETER

For the case of circular tunnels for BART (Ref. 4) six distinct
points can potentially affect the tunnel diameter (see Figures 8
and 9). The first is a function of the size and location of the
contact rail; the second and third are a function of the walkway;
and the car accounts for the remaining 3 points. They are as
follows (Reference 4):

"A. Clearance Point for Contact Rail

This is the point of contact rail which is normally op-
posite the walkway. This point constraints in the '"bot-
tom" of the circle.

"B. Walkway Tread Clearance

The service walkway tread in tunnels must be a certain
distance above the rail which is adjacent to the walkway.
Clearance must be provided between the transit car and
the walkway tread. Further, this walkway tread has a
certain minimum width. The intersection point of tread
and tunnel may become an extreme point constraining the
tunnel diameter.

19
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Figure 8. Six Points Affecting Tunnel Diameter (Ref. 4)-
Walkway on Opposite Side of Curve Center
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"C. Walkway Head-Room Clearance

Clearance must be provided between the transit car and
the top of the walkway envelope. The walkway envelope
has a specific minimum width at its top. With superele-
vation the combination of these factors produces a point
that may constrain the width of the tunnel.

”D‘} Corner of Envelope Interference Points

Contact of one (or even both) of the upper vehicle corners
with the tunnel may be critical points, constraining the
tunnel diameter.

"F. Top Point of Car

The intersection of the centerline of the car and the
roof of the car may be a critical point, if, for instance,
the car has a pyramidal shape or carries air-conditioning
equipment on the vehicle-roof."

3.4 CONCLUSION

The potential for standardization exists. If transit vehicles
can be standardized, a standard vehicle dynamic envelope can be
developed. The non-standard parameters would be vehicle speed
and radius of track curvature, which are site-dependent. Yet
standard clearance envelopes may be developed for similar track
curvatures, superelevations, and speeds. Thus, standardization
of tunnel sizes may initially be approached by standardizing the
individual parameters which must be accounted for in deriving the
interior dimensions of tunnels.



4, METHOD OF CALCULATION OF CIRCULAR TUNNEL DIAMETER (REF. W)

The normal approach used to determine both circular and non-
circular tunnel dimensions involves numerous hand calculations
over a range of track-curve radii under four distinct conditions:

Walkway on inside of curve: zero superelevation
Walkway on inside of curve: maximum superelevation
Walkway on outside of curve: =zero superelevation

Walkway on outside of curve: maximum superelevation.

For the particular case of circular tunnels, the six distinct
points which can potentially affect the tunnel diameter are again
identified (see Figures 8 and 9):

A - Clearance point for contact rail

Walkway tread clearance

Walkway head-room clearance
E - Corner of vehicle envelope interference points

m o O W
an

- Top point of car

These six points, defined earlier, reflect combinations of three

parameters:

e Location of walkway
e Zero or maximum superelevation

e Track radius of curvature.

For each combination of these parameters a tunnel diameter
is calculated using the following procedures:

1. Compute the coordinates of the six critical points.
Each point has a specific geometric relationship to the
control point. Each point offers a feasible method for
computing these coordinates.

2. Generally, only three of the six points will be on the
actual perimeter of the circle, but it is not obvious
which three are critical. Thus, each possible triplet
of points (20 in all) is considered.
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3. For each triplet we calculate a circle passing simultan-
eously through the three points. Circles not including
all six points are discarded. The remaining circles pose
feasible tunnel diameters, and the minimum of these is

selected.

The preceding graphical solution to calculating the tunnel
diameter obviously is time consuming and tedious. Oftentimes this
effort must be undertaken when the transit car and other required
criteria are in preliminary stages of consideration, and when key
dimensions change, the graphics often have to be completely re-
worked. To alleviate this tedious and time-consuming manual pro-
cedure, a computer code can be used to carry out the necessary
calculations (Ref. 4). Codes such as these have the potential of
substantially reducing the time required for design in future
transit projects and can provide more accurate information toward
the standardization of tunnel sizes.
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5. SUMMARY OF RESULTS

Tables 1 and 2 are a presentation of the collected data.
Table 1 identifies existing rapid transit tunnels in the U.S.,
giving the shape and inside dimensions of each. Table 2 identifies
the proposed rapid transit tunnel shapes and sizes to be built in
the U.S. Some cities which are identified as potential sites have
not yet determined their final engineering criteria, and thus
tunnel sizes may undergo future revision.

Table 3, derived from Tables 1 and 2, gives the range of tun-
nel inside dimensions for circular and non-circular tunnels.

Figures 10 and 11 compile the data found in Tables 1 and 2 to
illustrate visually the variations of inside dimensions found in
each of the tunnel shapes identified in Figure 1. Figure 10 il-
lustrates the variation of the dimensions "H'" and "ID" (Figure 1),
Figure 11, the dimension "W."

26



DIMENSION "H" (NON-CIRCULAR)

"ID" (CIRCULAR)

*&———-PROPOSED TUNNEL: SIZE WILL VARY
I AS FUNCTION OF SUPERELEVATION,
RANGE | TRACK RADIUS OF CURVATURE AND
3y LOCATION OF SAFETY WALK.
DIMENSIONS
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20'0"1 rr‘l
19'6"4- 4
190"+ —! |
| 1
186" il
18!0"__ 1 :—1 I
17'6"-' —1 1 I
o= 1, 1A
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16'0"+ | — ! )
1o ! | 1
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RO 8 S |
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Figure 10. Variations of Dimension "H" (see Fig. 1)

(Non-Circular) and "ID" (Circular)
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